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Introduction

• Convective heat transfer measurements on model entry 

vehicles obtained in hypersonic ground-test facilities

– Provide data necessary to validate entry-environment simulation 

tools, and to anchor ground-to-flight traceability

– Allows exploration of the impact of configuration (geometry 

and/or surface roughness) and test condition (Mach number, 

Reynolds number, test gas composition) on aerodynamic heating

• The Hypervelocity Free Flight Aerodynamic Facility 

(HFFAF) allows

– Testing in well-defined, quiescent, “freestream”

– Testing with no model support interference on the flow

– Independent control of Mach number and Reynolds number

– Testing in gases other than air

– Ability to closely match key aerodynamic parameters of full-scale 

flight in many cases
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• The Hypervelocity Free Flight Aerodynamic Facility (HFFAF)

– Gun-launched, free-flight projectiles
• Largest hypervelocity launcher 38.1 mm bore (speeds approaching 8.5 km/s)

• Largest launcher 61 mm bore (speeds approaching 2.5 km/s)

– Controlled-atmosphere test section with the capability to independently vary 

Mach number, Reynolds number, and test gas (Air, N2, CO2, Ar, H2/He, etc.)

– Developed during the Apollo era, every NASA entry capsule, from Apollo to the 

Low-Density Supersonic Decelerator (LDSD), has been tested in the facility

Model Launcher:

38.1 mm 2-Stage 

Light Gas Gun

For additional information visit http://www.nasa.gov/centers/ames/thermophysics-facilities/ballistic-ranges
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Introduction

• HFFAF Flight Simulation Envelope

– (Left) In terms of facility parameters, model velocity and test section 

static gas density

– (Right) In terms of Mach number and Freestream Reynolds number for 

a 2.5 cm diameter model
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*Designates conditions necessary to produce non-equilibrium flow in the shock layer over a blunt body of 1 cm nose 

radius in the ballistic range (Sharma and Park, J. Thermophysics, Vol. 4, No. 2, April 1990)
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Introduction

• Heat transfer measurements on hypervelocity free-flight 

models using discrete sensors (thin-film gauges, 

calorimeters, thermocouples) is challenging

– Models are small (< 38 mm diameter) and all data acquisition, 

data storage or transmission, and power systems hardware must 

fit inside the projectile

– Models are subjected to extreme accelerations on launch 

(100,000 to 500,000 g)

• Thermal imaging allows global measurement of surface 

temperatures on projectiles, from which convective heat 

transfer rates can be inferred

– Requires knowledge of the temperature-dependent 

thermophysical properties of the material from which the model 

is fabricated (conductivity, specific heat, and emissivity)
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• Thermography Instrumentation in the HFFAF

– Midwave infrared (3 – 5 m) for temperatures > 400 K

– Visible-light cameras (0.53 – 0.86 m) for temperature > 1000 K

• Test performance diagnostics cameras

– High-speed digital video (30 – 80 kHz), visible-light imaging
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Introduction

• Hypervelocity projectiles are self-luminous. Radiation 

from the bow shock or wake will bias the measure of 

thermal radiation from the heated surface if not mitigated

– In visible and IR wavelengths, bow shock radiation can be 

suppressed by flying through a local plume of helium

– In midwave IR wavelengths, 

bow shock and wake 

radiation can be filtered 

out optically (practically no

radiation in narrow band 

centered on 4 m)
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3m – 5m 3.85m – 4.15m

Model entering helium In helium Back in test gas

Extent of He
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Forebody Measurement Approach
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Example: 45o Sphere-Cone in Flight 

in HFFAF Test Section

Flight Mirror

Mirror

MirrorModel
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• Heat-transfer rate at each 

point on model determined by

– Simulating temperature time 

history by solving 1D heat 

conduction for different convective 

heat flux boundary conditions

– Find solution that best fits 

measured temperatures

Wilder, et al., AIAA-2014-0512

IR Images

Surface Temperature Distributions

Wilder, et al., AIAA-2011-3476
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Forebody Measurement Approach
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• Example: Effect of surface roughness on heat transfer

– Mean convective heat-flux profiles on 45o sphere-cone models in 

air: RN = 7.62 mm, V0 = 3.0 km/s, P∞ = 0.15 atm

Wilder, et al., AIAA-2014-0512
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Forebody Measurement Approach
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• Example: Effect of surface roughness on heat transfer

– Mean convective heat-flux profiles on 45o sphere-cone models in 

air: RN = 7.62 mm, V0 = 3.0 km/s, P∞ = 0.15 atm

Increasing roughness height, k, relative to sublayer thickness, s

Wilder, et al., AIAA-2014-0512
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Afterbody Measurements
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• Flight-test data, especially in non-

terrestrial atmospheres, are rare

– Limited afterbody data from Mars (Viking and 

Pathfinder) and Jupiter (Galileo)

• Interpretation of afterbody ground-test 

data obtained in wind tunnels are 

usually complicated by interference 

effects with the model support (or sting)

– The presence of a single traverse vertical 

wire support noticeably altered the sphere 

separation region shape at 1.3 < M < 5*

• There are no sting effects in free-flight 

ballistic-range tests, but data acquisition 

poses challenges

*Dayman, Jr., B., “Support Interference Effects on the 

Supersonic Wake,” AIAA Journal, Vol. 1, No. 8, August 1963

Effect of Vertical Wire Support Diameter 

on Sphere Wakes: M = 3, ReD = 2.2 x 105

D

L

Wake 

Length, L

0.77D

1.14D

1.37D

1.47D

1.56D

Wilder and Bogdanoff



Band-pass Filtered Image

Afterbody Measurement Challenges
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Computed Heat Flux on Sphere

4.4 km/s. 76 torr, CO2

Forebody    Afterbody

• Heat transfer rates on afterbodies

are low, only a few percent of 

stagnation-point value

• The wake of hypersonic 

projectiles is self luminous

− Wake radiation can be optically 

filtered from MWIR images

− But filter also reduces 

the thermal radiation 

signal by 70% to 90%

− Need materials that 

heat rapidly and 

re-radiate efficiently Bow Shock

Wake Trail

Wilder and Bogdanoff
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Model Design Approach

• Models fabricated in two parts:

– Metal forebody to withstand high stagnation-point heat flux

– Vespel afterbody insert for IR imaging on base

• Dupont Vespel SP-21, low thermal conductivity polyimide matrix with 

graphite micro particles for high emissivity

TFAWS 2015 – August 3-7, 2015 – Silver Spring, MD

15.88 mm (5/8”) Diameter Sphere

Vespel SP-21 Insert

Metal Sphere (Titanium, Steel, or Aluminum)
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Launch Package Design

• For heat-transfer measurements, models must be 

shielded from heating by launch propellant gas

– Obturation cup provides in-barrel gas seal, preventing gases 

from penetrating between sabot segments
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Afterbody Insert

Model and Sabot

Sabot segment

Obturation Cup

Hemisphere Launched 

without Obturator

Sabot segment join lines
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Afterbody Measurement Approach
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• Example: Sphere with Vespel afterbody insert

– Test gas = CO2 at 76 Torr, V0 = 4.44 km/s

Vespel Insert

Cavities

Isolated Step at 
Metal/Vespel Interface

Bright Spot of 
Unknown Origin

Forebody 
Visible Over 
“Horizon”

Representative IR Image Heat-Flux Map on 

Vespel Insert W/cm2

450

400

350

300

250

200

Wilder, et al., AIAA 2015-2966
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Afterbody Measurement Approach
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• Example: Stainless steel sphere with Vespel 

afterbody insert

− Mean convective 

heat-flux profiles 

on sphere in CO2

RN = 7.94 mm, 

V0 = 4.86 km/s, 

P∞ = 0.1 atm

= 76 Torr

− Axisymmetric, 

real-gas CFD

solution

-

Wilder and Bogdanoff



Results: Afterbody heat transfer, CO2
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Test gas = CO2 at 76 Torr

4.4 km/s 4.8 km/s 5.1 km/s

Base of SphereStart of Vespel 

Afterbody Insert

• Mean profiles averaged 

over 20o arc of Vespel 

insert

• Error bars represent ±10% 

of mean

Wilder and Bogdanoff



Results
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Heat Flux at the Base of a Sphere Afterbody 

vs. Stagnation-Point Heat Flux
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CO2

CO2

CO2

• Differences between 

measured and 

computed (assuming 

measured is accurate) 

likely indicate the 

limitations on using 

axisymmetric 

solutions to predict 

the 3D, unsteady, 

base-region flow

– Axisymmetric CFD 

known to over-predict 

3D solutions on 

afterbody (McDaniel, et 

al., JSR, 48/5, 2011)

Wilder and Bogdanoff



Results
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• Computed flow fields had shorter wake lengths, which may 

account for over-prediction of heat flux at the base

Shot 2766: test gas = CO2 at 76 Torr, V0 = 4.8 km/s

Wilder and Bogdanoff



Results
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• Computed flow fields had shorter wake lengths, which may 

account for over-prediction of heat flux at the base

Shot 2766: test gas = CO2 at 76 Torr, V0 = 4.8 km/s
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Results
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• Computed flow fields had shorter wake lengths, which may 

account for over-prediction of heat flux at the base

Shot 2766: test gas = CO2 at 76 Torr, V0 = 4.8 km/s
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Results
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• Computed flow fields had shorter wake lengths, which may 

account for over-prediction of heat flux at the base

Shot 2766: test gas = CO2 at 76 Torr, V0 = 4.8 km/s

Wilder and Bogdanoff



Summary

• Ames hypersonic ballistic range (HFFAF) is NASA’s only remaining 

operational free-flight facility with a fully enclosed test section, 

allowing flights through practically any test gas.

• Parameters such as Mach number and Reynolds number can be 

varied independently

• Thermal imaging allows global measurement of surface 

temperatures on projectiles, from which convective heat transfer 

rates can be inferred

– Examples of the measurement of heating augmentation due to 

surface roughness were given

• Thermal imaging technique recently 

demonstrated for measurements on the 

afterbody of spheres

– Future steps: make measurements on an 

entry probe configuration, preferably, one 

with flight data for comparison
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Questions?
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